Skip to main content

2 billion-year-old African nuclear reactor proves that Mother Nature still has a few tricks up her sleeve


We tend to think that humans are the only possible source of complex machinery on Earth. Leaving aside the exquisite complexity of biologically evolved organisms, it does seem to be true that the Earth creates less complexity than its human inhabitants. Yet, in the 1970s, nuclear excavators discovered a form of natural technology that not only humbled nuclear scientists with its simplicity, but which actually predated their achievements by several billion years. The startling discovery has supported decades of research, but its depths are still producing lessons for US regulators.
The objects in question are called the Oklo reactors, naturally occurring nuclear reactors named for the West African region of Gabon in which they reside. They’ve been dead for a very long time, probably over 1.5 billion years, but the evidence of their prior action is unmistakable. Sometime a bit less than 2 billion years ago, and lasting for about 300,000 years, the Oklo reactors held a series of stable nuclear fission reactions.
Oklo 2Upon their discovery, the central question about these reactors was simply: How could they possibly work? One early hypothesis was that the fundamental physical constants that restrict nuclear reactions today may have been different 2 billion years ago. Analysis of the wastes at Oklo, running all the way up to this very month, suggest that the physical constants have indeed been constant all along. That means the reactor would have needed a fissionable isotope in the same concentrations we require today.
Protection of nuclear enrichment technology is one of the defining international issues of our time. Many political theorists say that nuclear enrichment in Iran is the most likely cause of any future World War. If we have such trouble making raw uranium usable in stable fission reactions, how could an inanimate planet possibly do it?
Well, it didn’t. Back when these Oklo reactors first fired themselves up, Earth was barely half as old as it is today. That means that less time had passed since its initial formation from bits of galactic dust and rock. As a result, fewer radioactive half-lives had played out, and unstable isotopes were found in much higher concentrations. The most useful uranium isotope for nuclear power is uranium-235, which today accounts for just 0.7202% of any given natural sample of uranium. When the solar system first formed, that number would have been more like 17%, falling steadily until it reached the modern day value.
 A worker stands next to a deposit of, among other things, naturally depleted uranium.
A worker stands next to a deposit of, among other things, naturally depleted uranium.
And 2 billion years ago? Scientists estimate the Oklo reactors would have had samples with roughly 3.6% uranium-235 — that’s close to the enrichment threshold of modern nuclear reactors. However, just packing the right material into a closed space does not a power plant make.
Oklo nuclear reactor
One of the Oklo nuclear reactors. Doesn’t look like much, eh?
A stable nuclear fission reaction occurs because neutrons, one of the two large components of atomic nuclei, are knocked off of their original atoms so they can hit still more atoms, beginning the process again. For this to occur properly, you need enough “fissionable” isotope that the chain won’t fizzle out — if the neutrons thrown out by one fissionable atom don’t happen to impact any other fissionable atoms, then the reaction ends. Past about 3.2% concentration, probability says a reaction will continue all on its own.
But that only speaks to the relationship between atoms undergoing the fission process, and scientists were still stumped as to how that process got started in the first place. Neutrons released by the fission process are high-energy particles that tend to zip through even enriched uranium without impacting, or interacting at all. It turns out, the Oklo reactors got around this problem in much the same way that nuclear engineers did: water.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...