Skip to main content

New Research Is a Case of the Gut Leading the Blind


Click Image To Enlarge +
New research shows that retina-specific T cells receive an activation signal in the gut from an antigen dependent on commensal microbiota that triggers autoimmunity in the eye. [Horai and Zarate-Blades et al./Immunity 2015]
The microbiota of the human gut has become increasingly important toward the study of various disease states and has been implicated to play a pivotal role in immune response pathways. One area that has been seemingly disconnected from activities in the gut is vision—a new study, however, from researchers at the National Institutes of Health (NIH) may open the eyes of many scientists studying autoimmune uveitis.     
Autoimmune uveitis is a major cause of blindness in the western world, accounting for up to 15% of cases. The disease is triggered by the activation of T cells, but until recently, investigators remained perplexed as to exactly how and where the T cells get switched on. The NIH scientists observed that gut microbes produced a molecule that closely mimics a retinal protein—an event that is strongly associated with the T cell activation for this disease.
The larger implication of this study is not only the gut microbiome’s contribution to autoimmune disorders, but also that a greater understanding of the underlying molecular mechanisms could pave the way toward the development of novel therapeutic prevention strategies.    
"Given the huge variety of commensal bacteria, if they can mimic a retinal protein, it is conceivable that they could also mimic other self-proteins that are targets of inappropriate immune responses elsewhere in the body," explained senior study author Rachel Caspi, Ph.D., senior investigator at the NIH. "We believe that activation of immune cells by commensal bacteria may be a more common trigger of autoimmune diseases than is currently appreciated."  
The findings from this study were published recently in Immunity through an article entitled “Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site.”
Since the blood-retinal barrier sequesters retinal proteins within the eye, scientists had always run into a paradox when studying autoimmune uveitis: how did the proteins make it out of the eye to activate T cells, which cannot enter the eye unless activated. Clues began to emerge over the past several years, as evidence for an association between the gut microbiome and other autoimmune disorders grew. Moreover, some anecdotal reports suggested that uveitis was reactivated following bacterial infections. This led the NIH team to take a look at gut proteins for potential culprits.  
“In the present study we used the R161H mouse model of uveitis to study natural triggers of the disease,” the scientists wrote “Our data indicate that a microbiota-dependent signal activates retina-specific T cells in the gut lamina propria that precedes clinical onset of the disease in the eyes. More importantly, activation of these T cells is independent of the endogenous antigen and involves signaling through the clonotypic autoreactive TCR by microbiota-dependent stimuli.”
Dr. Caspi and her team were able to show that bacteria-rich protein extracts from the gut contents of these mice activated retina-specific T cells, making them capable of breaching the blood-retinal barrier to enter the eye and cause uveitis.
“Our study uncovers a novel mechanism whereby engagement of the specific T cell receptor by non-cognate stimuli in the gut activates autoreactive T cells and contributes to autoimmune disease,” the scientists reported.
Dr. Caspi and her team were excited by their findings and are now trying to identify specific bacteria that could produce the protein mimicking the retinal antigen in their animal model of uveitis. They will also look for additional signals that could contribute to the activation of disease-causing immune cells.
"Bioinformatic analyses combined with biological tests will help us to reach this goal, but there is still much work to be done," Dr. Caspi noted. “We may be able in the future to use this knowledge to selectively eliminate the responses that lead to the development of this disease.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...