Skip to main content

A new form of frozen water? Scientists reveal new ice with record-low density



.

Ice's molecular configuration. Credit: Yingying Huang and Chongqin Zhu

Amid the season known for transforming Nebraska into an outdoor ice rink, a University of Nebraska-Lincoln-led research team has predicted a new molecular form of the slippery stuff that even Mother Nature has never borne.
The proposed , which the researchers describe in a Feb. 12, 2016 study in the journal Science Advances, would be about 25 percent less dense than a record-low form synthesized by a European team in 2014.
If the ice can be synthesized, it would become the 18th known crystalline form of water—and the first discovered in the United States since before World War II.
"We performed a lot of calculations (focused on) whether this is not just a low-density ice, but perhaps the lowest-density ice to date," said Xiao Cheng Zeng, an Ameritas University Professor of chemistry who co-authored the study. "A lot of people are interested in predicting a new ice structure beyond the state of the art."
This newest finding represents the latest in a long line of ice-related research from Zeng, who previously discovered a two-dimensional "Nebraska Ice" that contracts rather than expands when frozen under certain conditions.
Zeng's newest study, which was co-led by Dalian University of Technology's Jijun Zhao, used a computational algorithm and molecular simulation to determine the ranges of extreme pressure and temperature under which water would freeze into the predicted configuration. That configuration takes the form of a clathrate—essentially a series of  that form an interlocking cage-like structure.



Researchers (from left) Chongqin Zhu, Yingying Huang and Xiao Cheng Zeng co-authored a study that has predicted the existence of a new form of ice. Credit: Craig Chandler/University Communications/University of Nebraska-Lincoln

It was long believed that these cages could maintain their structural integrity only when housing "guest molecules" such as methane, which fills an abundance of natural clathrates found on the ocean floor and in permafrost. Like the European team before them, however, Zeng and his colleagues have calculated that their clathrate would retain its stability even after its guest molecules have been evicted.
Actually synthesizing the clathrate will take some effort. Based on the team's calculations, the new ice will form only when water molecules are placed inside an enclosed space that is subjected to ultra-high, outwardly expanding pressure.
Just how much? At minus-10 Fahrenheit, the enclosure would need to be surrounded by expansion pressure about four times greater than what is found at the Pacific Ocean's deepest trench. At minus-460, that pressure would need to be even greater—roughly the same amount experienced by a person shouldering 300 jumbo jets at sea level.

The guest molecules would then need to be extracted via a vacuuming process pioneered by the European team, which Zeng credited with inspiring his own group to conduct the new study.
Yet Zeng said the wonders of ordinary ice—the type that has covered Earth for billions of years—have also motivated his team's research.
"Water and ice are forever interesting because they have such relevance to human beings and life," Zeng said. "If you think about it, the low density of natural ice protects the water below it; if it were denser, water would freeze from the bottom up, and no living species could survive. So Mother Nature's combination is just so perfect."
If confirmed, the new form of ice will be called "Ice XVII," a naming quirk that resulted from scientists terming the first two identified forms "Ice I."
Zeng and Zhao co-authored the Science Advances study with UNL postdoctoral researcher Chongqin Zhu; Yingying Huang, a visiting research fellow from the Dalian University of Technology; and researchers from the Chinese Academy of Sciences and the University of Science and Technology of China.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...