Skip to main content
Boeing has patented a plasma ‘force field’ to protect against shock waves

If it’s ever realised, it could protect military vehicles from energy emitted by nearby blasts.  

As weapons get more sophisticated, researchers are trying to build defence systems that can keep pace, and what’s better than a force field? 
Aerospace and defence giant Boeing has been awarded a patent to develop a force field-like system that could protect military vehicles from shockwaves following explosions from missiles or improvised explosive devices. 

Boeing’s proposed system involves using a combination of lasers, electricity and microwaves to rapidly heat up the air between the vehicle and a blast. This heat creates a plasma shield that's denser than the surrounding air and able to deflect or absorb the energy from the incoming shockwave.    
Unlike the impenetrable force fields of science fiction movies, the system is not designed to prevent direct impacts or shrapnel. Instead, Boeing’s system is designed to protect a target - which could be a vehicle carrying troops, or a building such as a command centre or a hospital - from the after-effects of nearby explosions.
The system, which would likely be mounted on a military vehicle, or some other target, would have sensors that can detect the velocity and shape of an incoming threat. The system would also be able to determine the size and force of the resulting explosion. 
Its sensors and computers would be able to calculate the time it would take the shock wave from an explosion to reach the target, and from what direction. This is important, as the generated force field would only protect a small region of the target, rather than enveloping the entire thing. 
Once it has determined the timing of the shock wave, the system’s objective is to somehow heat the air around the target, generating what Boeing terms a  “transient medium” that intercepts the shock wave and reduces the energy density. 
Illustration of the proposed system (Credit: Boeing)Illustration of the proposed system (Credit: Boeing)
"The general concept is to use an electromagnetic arc to create this intermediate medium in mid-air on very short notice by using a stupendous amount of energy to heat the air into a plasma.“
The plasma, which is much hotter than the surrounding air, also has a different density and composition. Boeing believes this plasma field is enough to divert, reflect or absorb the energy passing through.  
In its application, Boeing outlines several different embodiments of the systems, with different methods for detecting threats, and for rapidly creating the plasma field. 
One option uses converging lasers or microwave beams to generate a spherical region of plasma. Alternatively, the force field could be generated by firing lasers that induce plasma channels in the air, which provide a path for an electric discharge to create the plasma shield. These same pathways could be created by launching metal pellets that leave conductive trails as they fly. 
However they decide to make it work, it's a pretty cool idea. We'll be waiting for the first the prototype, which may or may not be able to defend against shock waves from this crazy new weapon.  

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...