Skip to main content
Scientists have produced a new kind of particle that carries energy

Go with the flow.

New types of particles called 'topological plexcitons' have been engineered by researchers in the US, and they could help pave the way for more efficient energy transfers in solar cells and other forms of photonic circuits.
To understand what's different about these new topological plexcitons, we need to get back to basics on some of physics involved with light and matter when they interact on the tiniest of scales.


The University of California, San Diego team has managed to improve on a process known as exciton energy transfer (EET). EET describes the way light and matter exchange energy when they meet.
"Energy can flow back and forth between light in a metal (so called plasmon) and light in a molecule (so called exciton)," said one of the team, biochemist Joel Yuen-Zhou.
"When this exchange is much faster than their respective decay rates," he added, "their individual identities are lost, and it is more accurate to think about them as hybrid particles; excitons and plasmons marry to form plexcitons.”
In other words, on its own, EET is only possible over very short distances – about about one hundred millionth of a metre. But one way to extend this is by creating plexcitons, where excitons in a molecular crystal are combined with plasmons – the energy created from light interacting with metal.
That increases the range of EET to about the width of a human hair, but the energy flow is very difficult to harness, which is where this new research comes in.

Physicists from the UC San Diego, the Massachusetts Institute of Technology (MIT), and Harvard University have used materials called topological insulators to act as conductors for EET, forcing the plexcitons to move in one direction, and that means scientists can control the flow of light energy at an incredibly small scale.
"Understanding the fundamental mechanisms of EET enhancement would alter the way we think about designing solar cells or the ways in which energy can be transported in nanoscale materials," said chemist Joel Yuen-Zhou from UC San Diego.
"The exciting feature of topological insulators is that even when the material is imperfect and has impurities, there is a large threshold of operation where electrons that start travelling along one direction cannot bounce back, making electron transport robust," said Yuen-Zhou. "In other words, one may think about the electrons being blind to impurities."
One of the applications of the research is it should enable engineers to create 'plexcitonic switches' that can distribute energy selectively across solar panels or other kinds of light-harvesting devices.
The researchers think plexcitons will be be crucial in the development of light-based nanoelectronics in the future, so being able to control them in this way could be a significant step forward.
Miniaturised photonic circuits have the potential to be dozens of times smaller than today's silicon circuits, so it's possible that topological plexcitons will end up in lot of the devices we use every day. Watch this space.  
The research is published in Nature Communications.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...