Skip to main content

Lawrencium experiment could shake up periodic table


Size of first ionisation energies for the elements © Kazuaki Tsukada/NPG

Lawrencium’s position on the periodic table may now be up for debate after scientists in Japan successfully measured the first ionisation potential of the synthetic f-block element. The result may provide fuel for arguments that lawrencium and its close cousin, lutetium, should be considered part of the central d-block.
Named after Ernest Lawrence, the famed nuclear scientist, lawrencium was first produced in 1961 by bombarding a small californium target with boron atoms and is now one of the superheavy elements occupying the actinide series. But the family of laboratory-made elements are notoriously difficult to produce in large amounts, with lawrencium being one of the most cantankerous.
‘We cannot get a weighable amount of lawrencium,’ states Yuichiro Nagame from the Japan Atomic Energy Agency (JAEA). According to Nagame, researchers can only produce one lawrencium atom every few seconds and, once they do, its lifetime is very brief – it has a half-life of just 27 seconds.
These production rates are in stark contrast to other superheavy elements such as fermium, where researchers have been able to produce millions of atoms over a reasonable timescale. ‘This is a very difficult situation for experimentalists,’ comments Nagame.
But the JAEA team were able to overcome this obstacle by applying a surface ionisation technique. Producing lawrencium atoms via the same process used to discover it, Nagame and his colleagues captured the element in a helium and cadmium iodide gas. The gas was quickly passed through to a heatedtantalum surface that gave the lawrencium sufficient energy to shed its outer electron. The freshly-produced ions were subsequently passed through a mass analyser in order to calculate the first ionisation potential, which the team measured to be 4.96eV – this is in excellent agreement with the predicted value of 4.963eV.
Such a result confirms that lawrencium has the lowest first ionisation potential of all of the known f-block elements. It also reaffirms its proposed electronic configuration, which theorists have suggested has a weakly-bound valence electron in a dumbbell -shaped p-orbital.
This work may now lead researchers to reassess lawrencium’s position on the periodic table, as it suggests the actinide may behave in a similar fashion to elements such as sodium and potassium, as well as d-block elements. ‘[Lutetium and lawrencium] – the last column of lanthanides and actinides – could be put into the group III column of the periodic table, under scandium and yttrium,’ says Nagame.
Irrespective of the debate this research will help to ignite, Sebastian Rothe from CERN in Switzerland believes it’s an important development: ‘I think it’s a great result – especially because it is on a very exotic element that is artificially produced.’

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Scientists solve puzzle of turning graphite into diamond

Stochastic surface walking simulations can explain why graphite turns into hexagonal, not cubic, diamond under pressures of 5-20 gigapascals. Credit: Xie et al. ©2017 American Chemical Society Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the more familiar cubic diamond, as predicted by theory? The answer largely comes down to a matter of speed—or in chemistry terms, the reaction kinetics. Using a brand new type of simulation, the researchers identified the lowest-energy pathways in the graphite-to-diamond transition and found that the transition to hexagonal diamond is about 40 times faster than the transition to cubic diamond. Even when cubic diamond does begin to form, a large amount of hexagonal diamond is still mixed in. The researchers, Yao-Ping Xie, Xiao-Jie Zhang, and Zhi-Pan Liu at Fudan University and S...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...