Skip to main content

CERN researchers confirm existence of the Force


The Force has proven a popular research tool for the CERN beams department (Image: Max Brice and Daniel Dominguez/CERN)
Update 2 April 2015: Enjoy our April fool? But seriously folks, this week CERN is busy with restarting the Large Hadron Collider (LHC)

Researchers at the Large Hadron Collider just recently started testing the accelerator for running at the higher energy of 13 TeV, and already they have found new insights into the fundamental structure of the universe. Though four fundamental forces  – the strong force, the weak force, the electromagnetic force and gravity – have been well documented and confirmed in experiments over the years, CERN announced today the first unequivocal evidence for the Force. “Very impressive, this result is,” said a diminutive green spokesperson for the laboratory.

“The Force is what gives a particle physicist his powers,” said CERN theorist Ben Kenobi of the University of Mos Eisley, Tatooine. “It’s an energy field created by all living things. It surrounds us; and penetrates us; it binds the galaxy together.”
Though researchers are as yet unsure what exactly causes the Force, students and professors at the laboratory have already started to harness its power. Practical applications so far include long-distance communication, influencing minds, and lifting heavy things out of swamps.
Kenobi says he first started teaching the ways of the Force to a young lady who was having trouble revising for her particle-physics exams. "She said that I was her only hope," says Kenobi. "So I just kinda took it from there. I designed an experiment to detect the Force, and passed on my knowledge."
Kenobi's seminal paper "May the Force be with EU" – a strong argument that his experiment should be built in Europe – persuaded the CERN Council to finance the installation of dozens of new R2 units for the CERN data centre*. These plucky little droids are helping physicists to cope with the flood of data from the laboratory's latest experiment, the Thermodynamic Injection Energy (TIE) detector, recently installed at the LHC.
"We're very pleased with this new addition to CERN's accelerator complex," said data analyst Luke Daniels of human-cyborg relations. "The TIE detector has provided us with plenty of action, and what's more it makes a really cool sound when the beams shoot out of it."
But the research community is divided over the discovery. Dark-matter researcher Dave Vader was unimpressed, breathing heavily in disgust throughout the press conference announcing the results, and dismissing the cosmological implications of the Force with the quip "Asteroids do not concern me".
Rumours are growing that this rogue researcher hopes to delve into the Dark Side of the Standard Model, and could even build his own research station some day. With the academic community split, many are tempted by Vader's invitations to study the Dark Side, especially researchers working with red lasers, and anyone really with an evil streak who looks good in dark robes.
CERN physicist Valerio Rossetti harnesses the Force for more mundane tasks, such as reheating coffee (Image: Max Brice and Daniel Dominguez/CERN)
"We hope to continue to study the Force, and perhaps use it to open doors with our minds and fly around and stuff," said TIE experimentalist Fan Buoi. "Right now, to be honest, I don't really care how it works. The theory department have some crackpot idea about life forms called midi-chlorians, but frankly I think that poorly thought out explanations like that just detract from how cool the Force really is."
With the research ongoing, many at CERN are already predicting that the Force will awaken later this year.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...