Skip to main content

Controlling thermal conductivities can improve energy storage


Controlling thermal conductivities can improve energy storage
The in-situ TDTR liquid cell is composed of LiCoO2 thin film cathode, a Li anode, and liquid electrolyte. Credit: University of Illinois
Controlling the flow of heat through materials is important for many technologies. While materials with high and low thermal conductivities are available, materials with variable and reversible thermal conductivities are rare, and other than high pressure experiments, only small reversible modulations in thermal conductivities have been reported.
For the first time, researchers at the University of Illinois at Urbana-Champaign have experimentally shown that the  of lithium  (LixCoO2), an important material for electrochemical , can be reversibly electrochemically modulated over a considerable range.
"This work is the first experimental demonstration of the electrochemical modulation of the thermal conductivity of a material, and, in fact, the only demonstration of large variable and reversible thermal conductivities in any material by any approach, other than very high pressure experiments," explained Paul Braun, a professor of materials science and engineering (MatSE) at Illinois. The results of research have been reported in the article, "Electrochemically Tunable Thermal Conductivity of Lithium Cobalt Oxide," appearing in Nature Communications.
One technology that may be directly impacted by this work is the field of  storage. Understanding and controlling heat evolution and dissipation in rechargeable batteries is critical. Yet prior to this work, it was not even known that the thermal conductivity of materials commonly used as cathodes changed significantly as a function of the state of charge.
"Our work opens up opportunities for dynamic control of thermal conductivity and additionally, may be important for thermal management in  devices which use cathodes based on transition metals oxides such as lithium cobalt oxide," added MatSE professor David Cahill, one of the paper's co-authors.
A better understanding of the thermal properties of battery electrodes may help in the design of batteries that can be charged more rapidly, deliver more power, and operate with a greater margin of safety, since the heat generated during fast cycling and temperature variations in general are very detrimental to lithium-ion batteries.
Lithium cobalt oxide is a chemical compound commonly used in the positive electrodes (cathodes) of . The process of lithiation (discharging) and delithiation (charging) of battery cathode materials is one of the basic electrochemical processes in lithium ion batteries.
"The experimental system is designed to be simple to avoid ambiguities common in thermal studies," stated Jiung Cho, first author of the paper. "Lithium cobalt oxide film is sputtered directly on a metal coated electrode, and then immersed in a common electrolyte." Time-domain thermoreflectance (TDTR) is used to measure the thermal conductivity of the lithium cobalt oxide thin film as a function of lithiation.
"We perform both in-situ experiments which enable direct observation of thermal conductivity as a function of the degree of lithiation, and ex-situ experiments, which provide the thermal conductivity of the lithiated and delithiated state in the absence of electrolyte," Cho said.
"We suspect our findings are quite general, and that this will only be the first example of transition metal oxides with oxidation-state dependent thermal conductivities," Braun added.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in