Skip to main content

Theoretical device could bring practical spintronics closer to reality



Spin currents in superconductor–ferromagnet multilayers. Sandwiched between two superconductors, spin-triplet Cooper pairs formed by two electrons can be sustained in the ferromagnet and carry spin currents over relatively long distances. Credit: 2013 Seiji Yunoki and Shin-ichi Hikino, RIKEN Center for Emergent Matter Science



One of the major hurdles in the development of faster electronic devices is the amount of heat produced by silicon microchips. This heat is created by the transport of electrical charges through transistors. Seiji Yunoki and colleague Shin-ichi Hikino from the RIKEN Center for Emergent Matter Science in Wako have now proposed a device that instead of moving electrons is able to transport information using electron spin over long distances.


Moving electrons through a material creates intense heat as the electrons bounce off the atoms in the device. Moving information by passing it from one electron to another without any electron movement would therefore eliminate this source of heat. The magnetic property of electrons—their spin—has been studied as a possible means of achieving such a scheme. However, conventional magnetic materials fail to provide the long-distance transport of information required for such a strategy. "It is well known that conventional spin current can propagate only short distances," says Yunoki. "This is one of the most critical problems in the research of spintronics."
The spintronics scheme proposed by Yunoki and Hikino is based on sandwiching two adjacent thin magnetic films between superconducting layers. In , the electrons are bound together in pairs formed by antiparallel electron spins, called a spin-singlet Cooper pair. However, with a  nearby, the spin of the two electrons in such a Cooper pair will align itself in the same direction as the magnetic field. These spin-triplet Cooper pairs (STCs) can move from the superconductor into the ferromagnetic layer, where they are very stable and long-lived (Fig. 1).
The researchers have mathematically shown that within the ferromagnetic layer, the STC is able to carry spin currents over extended distances of several tens to hundreds of nanometers, and possibly even more if the magnetic material can be made with high purity. The spin transport happens without any charge current, and there is no voltage drop across the devices, meaning that no heat would be generated.
So far, devices showing spin currents have been very difficult to realize, and such currents in the STC have never been observed. However, the simplicity of the proposed scheme promises its realization and could open a new era, says Yunoki. "We expect that the proposed superconductor–ferromagnet multilayer device can provide a new platform to study the spin transport of Cooper pairs in this developing research field."

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...