Skip to main content
Scientists have discovered a new state of matter, called 'Jahn-Teller metals'

And it could be the key to understanding one of the biggest mysteries in physics today - high-temperature superconductors.

An international team of scientists has announced the discovery of a new state of matter in a material that appears to be an insulator, superconductor, metal and magnet all rolled into one, saying that it could lead to the development of more effective high-temperature superconductors.
Why is this so exciting? Well, if these properties are confirmed, this new state of matter will allow scientists to better understand why some materials have the potential to achieve superconductivity at a relativity high critical temperature(Tc) - "high" as in −135 °C as opposed to −243.2 °C. Because superconductivity allows a material to conduct electricity without resistance, which means no heat, sound, or any other form of energy release, achieving this would revolutionise how we use and produce energy, but it’s only feasible if we can achieve it at so-called high temperatures.
As Michael Byrne explains at Motherboard, when we talk about states of matter, it’s not just solids, liquids, gases, and maybe plasmas that we have to think about. We also have to consider the more obscure states that don’t occur in nature, but are rather created in the lab - Bose–Einstein condensate, degenerate matter, supersolids and superfluids, and quark-gluon plasma, for example. 
By introducing rubidium into carbon-60 molecules - more commonly known as 'buckyballs' - a team led by chemist Kosmas Prassides from Tokohu University in Japan was able to change the distance between them, which forced them into a new, crystalline structure. When put through an array of tests, this structure displayed a combination of insulating, superconducting, metallic, and magnetic phases, including a brand new one, which the researchers have named 'Jahn-Teller metals'. 
Named after the Jahn-Teller effect, which is used in chemistry to describe how at low pressures, the geometric arrangement of molecules and ions in an electronic state can become distorted, this new state of matter allows scientists to transform an insulator - which can’t conduct electricity - into a conductor by simply applying pressure. Byrne explains at Motherboard: 
"This is what the rubidium atoms do: apply pressure. Usually when we think about adding pressure, we think in terms of squeezing something, forcing its molecules closer together by brute force. But it's possible to do the same thing chemically, tweaking the distances between molecules by adding or subtracting some sort of barrier between them - sneaking in some extra atoms, perhaps.
What happens in a Jahn-Teller metal is that as pressure is applied, and as what was previously an insulator - thanks to the electrically-distorting Jahn-Teller effect - becomes a metal, the effect persists for a while. The molecules hang on to their old shapes. So, there is an overlap of sorts, where the material still looks an awful lot like an insulator, but the electrons also manage to hop around as freely as if the material were a conductor."
And it’s this transition phase between insulator and conductor that, until now, scientists have never seen before, and hints at the possibility of transforming insulating materials into super-valuable superconducting materials. And this buckyball crystalline structure appears to be able to do it at a relatively high TC. "The relationship between the parent insulator, the normal metallic state above Tc, and the superconducting pairing mechanism is a key question in understanding all unconventional superconductors," the team writes in Science Advances.
There’s a whole lot of lab-work to be done before this discovery will mean anything for practical energy production in the real world, but that’s science for you. And it’s got people excited already, as chemist Elisabeth Nicol from the University of Guelph in Canada told Hamish Johnston at PhysicsWorld: "Understanding the mechanisms at play and how they can be manipulated to change the Tc surely will inspire the development of new [superconducting] materials".

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...