Skip to main content
Physicists say they've figured out how to 'see' inside a black hole


What lies beyond the event horizon.

Physicists have come up with a new way to predict what lies beyond the event horizon of a black hole, and it could give us a more accurate idea of their mysterious internal structures.

Thanks to the first - and now second - direct observation of gravitational waves emanating from what scientists think are black hole mergers, we’re starting to get our first real evidence that black holes do actually exist in reality, not just theory.

But even if we can prove they really do physically exist, there’s no getting around the fact that, thanks to their enormous gravitational pull, black holes swallow up anything that falls beyond their event horizon. 
Not even light can escape the pull of a black hole, and that means no instrument on Earth, no matter how sophisticated, can visualise what exactly is going on in there. Wormholes? Singularity? All the pens? ¯\_(ツ)_/¯ (Please let it be wormholes.)
Studying black holes is basically like doing science backwards. Usually you’ll observe something strange and new first, go and analyse the crap out of it, and come up with an hypothesis to explain and classify it - possibly with the help of some complicated mathematics.
When it comes to black holes, we start with the hypotheses and mathematics, and then try to figure out how to observe what we think is there. 
But there’s one big problem with this method, as a team from Johns Hopkins and Towson University point out - physicists have been building their view of the internal structure of a black hole based on how certain mathematical coordinates fit together. 
Depending on which coordinates you choose, and how they’re viewed from your position as an observer, you’ll likely get very different results from someone who chooses a different set of coordinates from another viewpoint. 

Just look at the mess our maps and atlases have made when it comes to our perception of our own planet, because we’ve been representing certain landmasses subjectively, rather than relatively. 
"[A]ny such coordinate choice necessarily results in a distorted view, just as the choice of projection distorts a map of the Earth," the team argues. "The truest way to depict the properties of a black hole is through quantities that are coordinate-invariant."
The researchers, led by physicist Kielan Wilcomb from Towson University, say in order to figure out what’s inside a black hole, you must focus exclusively on mathematical quantities known as invariants, which have the same value for any choice of coordinates.
At the 228th meeting of the American Astronomical Society in San Diego this week, the team reported that there are 17 such quantities related to the curvature of spacetime that can be used to study black hole interiors. Because of certain mathematical relationships between them, they say only five are truly independent. 
"[O]ne needs five such quantities to fully characterise the curvature of spacetime inside all possible time-independent black holes," they report.
The team has published their findings on pre-press website arXiv.org ahead of peer-review, so other physicists can use these five invariants to try to construct the inside of a hypothetical black hole. We won't know for sure how sound their technique is until independent tests verify it, but Wilcomb and co. say when they tried it out themselves, they saw something truly awesome:
"We compute and plot all the independent curvature invariants of rotating, charged black holes for the first time, revealing a landscape that is much more beautiful and complex than usually thought."
Now all we need to do is figure out if we can get to another universe through a black hole, so we can all plan our parallel universe vacations.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in