Skip to main content

Physicists just discovered a second state of liquid water

It’s one of the most fundamental compounds on Earth, and it makes up roughly 60 percent of the human body, and yet water is turning out to be stranger than we could have ever imagined.
Researchers have been investigating the physical properties of water, and found that when it’s heated to between 40 and 60 degrees Celsius, it hits a 'crossover temperature', and appears to start switching between two different states of liquid.
As a chemical compound, water is so vital to life on Earth, we’ve been underestimating how legitimately weird it is.
We’ve all gotten so used to it, it’s hard to imagine things getting any more complex than the three basic states: solid, liquid, gas. (Under very rare circumstances, a plasma-like state can also form.)
But in many ways, plain, old water is unlike any other substance on the planet. 
With the exception of Mercury, water has the highest surface tension of all liquids. It’s also one of the only known substances whose solid state can float on its liquid state, and unlike almost every other known substance, water expands when it freezes.
It also has a bizarre boiling point. While the boiling points of other hydrides, such as hydrogen telluride and hydrogen sulphide, decrease as their molecule size decreases, H2O has a surprisingly large boiling point for such a small molecular weight. 
"No one really understands water," Philip Ball points out in Nature. "It’s embarrassing to admit it, but the stuff that covers two-thirds of our planet is still a mystery. Worse, the more we look, the more the problems accumulate: new techniques probing deeper into the molecular architecture of liquid water are throwing up more puzzles."
Now physicists have demonstrated that somewhere between the temperatures of 40 and 60 degrees Celsius (104 and 140 degrees Fahrenheit), liquid water can 'switch' states, exhibiting a whole new set of properties depending on the state it flips to.
To figure this out, an international team led by physicist Laura Maestro from the University of Oxford in the UK looked at a number of specific properties of water.
They looked at things like thermal conductivity, refractive index, conductivity, surface tension, and the dielectric constant - how well an electric field can spread through a substance - and how they responded to fluctuations in temperature between 0 and 100 degrees Celsius. 
Once the water hit 40 degrees, things started to shift, and properties were changing all the way up to 60 degrees. Each property had a different 'crossover temperature' somewhere within this threshold, and the researchers suggest that this is because the liquid water had switched into a different phase.
The team lists a few of these crossover temperatures: approximately 64 degrees Celsius for thermal conductivity, 50 degrees Celsius for refractive index, about 53 degrees Celsius for conductivity, and 57 degrees Celsius for surface tension.
"These results confirm that in the 0-100 degrees Celsius range, liquid water presents a crossover temperature in many of its properties close to 50 degrees Celsius," they conclude.
So what's going on here? It's not yet clear, but the fact that water could be switching between two entirely different states of liquid at certain temperatures could be linked to why H2O has such unusual properties in general.
Water molecules maintain only very short-lived connections between each other, and these hydrogen bonds are actually far weaker than the bonds that link the individual hydrogen and oxygen atoms inside the molecules. 
For this reason, the hydrogen bonds that link water molecules together are constantly breaking and reforming, and yet within all that chaos, set structures and 'rules' persist. Physicists suspect that this is what gives water its unusual properties - but no one's entirely sure how it works.
"Everyone is agreed that one aspect of water’s molecular structure sets it apart from most other liquids: fleeting hydrogen bonds," Ball writes for Nature.
"These feeble bonds that link the molecules constantly break and form above water’s melting point, yet still impose a degree of structure on the molecular jumble. That’s where the consensus ends."
While Maestro and her team's results will need to be replicated by an independent team before we can start rewriting textbooks to reflect the four (or 3.5?) states of water that could potentially exist, they say their discovery could have big implications for our understanding of both nano and biological systems.
"For example, the optical properties of metallic (gold and silver) nanoparticles dispersed in water, used as nanoprobes, and the emission properties of ... quantum dots, used for fluorescence bioimaging and tumour targeting, show a singular behaviour in this temperature range," they write in their paper.
"[It also] raises the question of whether temperature-driven structural changes in water affect biological macromolecules in aqueous solutions, and in particular in proteins, which are the vital functional biological units in living cells."
The research has been published in the International Journal of Nanotechnology.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...