Skip to main content

Quantum teleportation was just achieved over more than 7 km of city fibre

Quantum teleportation just moved out of the lab and into the real world, with two independent teams of scientists successfully sending quantum information across several kilometres of optical fibre networks in Calgary, Canada, and Hefei, China.


The experiments show that not only is quantum teleportation very much real, it's also feasible technology that could one day help us build unhackable quantum communication systems that stretch across cities and maybe even continents.

Quantum teleportation relies on a strange phenomenon called quantum entanglement. Basically, quantum entanglement means that two particles are inextricably linked, so that measuring the state of one immediately affects the state of the other, no matter how far apart the two are - which led Einstein to call entanglement "spooky action at a distance".
Using that property, quantum teleportation allows the quantum state of one particle to be transferred to its partner, no matter the distance between the two, without anything physical passing between them.
That's not like the teleportation you see in sci-fi shows like Star Trek - only information can be sent via quantum teleportation, not people.
What it is, though, is a great way to create an unhackable, totally encrypted form of communication - just imagine receiving information that can only be interpreted once you know the state of your entangled particle.
In the latest experiments, both published in Nature Photonics (here and here), the teams had slightly different set-ups and results. But what they both had in common is the fact that they teleported their information across existing optical fibre networks - which is important if we ever want to build useable quantum communication systems.
In fact, quantum teleportation has been achieved over greater distances in the past - in 2012, researchers from Austria set a record by teleporting information across 143 km of space using lasers, but that technology isn't as useful for practical networks as optical fibre.
To understand the experiments, Anil Ananthaswamy over at New Scientist nicely breaks it down like this: picture three people involved - Alice, Bob, and Charlie. 
Alice and Bob want to share cryptographic keys, and to do that, they need Charlie's help. Alice sends a particle to Charlie, while Bob entangles two particles and sends just one of them to Charlie.
Charlie then measures the two particles he's received from each of them, so that they can no longer be differentiated - and that results in the quantum state of Alice's particle being transferred to Bob's entangled particle.
So basically, the quantum state of Alice's particle eventually ends up in Bob's particle, via a way station in the form of Charlie.
The Canadian experiment followed this same process, and was able to send quantum information over 6.2 km of Calgary's fibre optic network that's not regularly in use.
"The distance between Charlie and Bob, that's the distance that counts," lead researcher of the Canadian experiment, Wolfgang Tittel, from the University of Calgary in Alberta, told New Scientist"We have shown that this works across a metropolitan fibre network, over 6.2 kilometres, as the crow flies."
The Chinese researchers were able to extend their teleportation further, over a 12.5 km area, but they had a slightly different set-up. It was Charlie in the middle who created the entangled particles and sent one to Bob, instead of the other way around.
This resulted in more accurate communication, and could work best for a quantum network where a central quantum computer (Charlie) communicates with lots of Alices and Bobs around a city. But the Calgary model could spread even greater distances, because Bob could work like a quantum repeater, sending the information further and further down the line.
The downside to both experiments was that they couldn't send very much information. The Calgary experiment was the fastest, managing to send just 17 photons a minute
And while many people assume that quantum teleportation would result in faster communication, in reality, decrypting the quantum state of the entangled particle requires a key, which needs to be sent via regular, slow communication - so quantum teleportation wouldn't actually be any faster than the internet we already have, just more secure.
But the fact that both teams were able to use existing telecommunications infrastructure to achieve such long-distance teleportation at all is a huge deal - and something that hasn't been done outside of the lab before.
It's going to take a lot more tweaking and investigation before it's something that we can use in our daily lives, but we're definitely getting closer.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in