Skip to main content

A new type of atomic bond has been discovered

For the first time, physicists have observed a strange molecule called the butterfly Rydberg molecule - a weak pairing of highly excitable atoms that was first predicted back in 2002.
The find not only confirms a 14-year-old prediction - it also confirms the existence of a whole new type of atomic bond. 
Rydberg molecules form when an electron is kicked far from an atom's nucleus, making them super electronically excited.
On their own, they're common enough. But back in 2002, a team of researchers from Purdue University in Indiana predicted that a Rydberg molecule could attract and bind to another atom - something that was thought impossible according to our understanding of how atoms bind at the time.
They called that hypothetical molecule combination the butterfly Rydberg molecule, because of the butterfly-like distribution of the orbiting electrons.
And now, 14 years later, the same team has finally observed a butterfly Rydberg molecule in the lab, and in the process, has discovered a whole new type of weak atomic bond. 
"This new binding mechanism, in which an electron can grab and trap an atom, is really new from the point of view of chemistry," explained lead researcher Chris Greene. "It's a whole new way an atom can be bound by another atom."
Rydberg molecules are unique because they can have electrons that are between 100-1,000 times further away from the nucleus than normal.
The team was able to create them for this experiment by cooling Rubidium gas to a temperature of 100 nano-Kelvin - one ten-millionth of a degree above absolute zero - then exciting the atoms into a Rydberg state using lasers.
The team kept these Rydberg molecules under observation to see if they could indeed attract another atom. They were looking for any changes in the frequency of light the molecules could absorb, which would be a sign that an energy binding had occurred.
Eventually, they discovered that the distant electrons could indeed help attract and bind with other atoms, just as they had predicted in 2002.
"This [distant] electron is like a sheepdog," said Greene. "Every time it whizzes past another atom, this Rydberg atom adds a little attraction and nudges it toward one spot until it captures and binds the two atoms together."
"It's a really clear demonstration that this class of molecules exist," he added
These special butterfly Rydberg molecules are substantially larger than normal molecules due to their distantly orbiting electrons, and now that we know they exist, they could be used in the development of molecular-scale electronics and machines because they require less energy to move.
"The main excitement about this work in the atomic and molecular physics community has related to the fact that these huge molecules should exist and be observable, and that their electron density should exhibit amazingly rich, quantum mechanical peaks and valleys," Greene told The Telegraph's Roger Highfield in 2012.
We're looking forward to seeing what happens with them now.
The team's findings have been published in Nature Communications.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...