Skip to main content

A new type of atomic bond has been discovered

For the first time, physicists have observed a strange molecule called the butterfly Rydberg molecule - a weak pairing of highly excitable atoms that was first predicted back in 2002.
The find not only confirms a 14-year-old prediction - it also confirms the existence of a whole new type of atomic bond. 
Rydberg molecules form when an electron is kicked far from an atom's nucleus, making them super electronically excited.
On their own, they're common enough. But back in 2002, a team of researchers from Purdue University in Indiana predicted that a Rydberg molecule could attract and bind to another atom - something that was thought impossible according to our understanding of how atoms bind at the time.
They called that hypothetical molecule combination the butterfly Rydberg molecule, because of the butterfly-like distribution of the orbiting electrons.
And now, 14 years later, the same team has finally observed a butterfly Rydberg molecule in the lab, and in the process, has discovered a whole new type of weak atomic bond. 
"This new binding mechanism, in which an electron can grab and trap an atom, is really new from the point of view of chemistry," explained lead researcher Chris Greene. "It's a whole new way an atom can be bound by another atom."
Rydberg molecules are unique because they can have electrons that are between 100-1,000 times further away from the nucleus than normal.
The team was able to create them for this experiment by cooling Rubidium gas to a temperature of 100 nano-Kelvin - one ten-millionth of a degree above absolute zero - then exciting the atoms into a Rydberg state using lasers.
The team kept these Rydberg molecules under observation to see if they could indeed attract another atom. They were looking for any changes in the frequency of light the molecules could absorb, which would be a sign that an energy binding had occurred.
Eventually, they discovered that the distant electrons could indeed help attract and bind with other atoms, just as they had predicted in 2002.
"This [distant] electron is like a sheepdog," said Greene. "Every time it whizzes past another atom, this Rydberg atom adds a little attraction and nudges it toward one spot until it captures and binds the two atoms together."
"It's a really clear demonstration that this class of molecules exist," he added
These special butterfly Rydberg molecules are substantially larger than normal molecules due to their distantly orbiting electrons, and now that we know they exist, they could be used in the development of molecular-scale electronics and machines because they require less energy to move.
"The main excitement about this work in the atomic and molecular physics community has related to the fact that these huge molecules should exist and be observable, and that their electron density should exhibit amazingly rich, quantum mechanical peaks and valleys," Greene told The Telegraph's Roger Highfield in 2012.
We're looking forward to seeing what happens with them now.
The team's findings have been published in Nature Communications.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...