Skip to main content

Scientists use oxygen 'scissors' to make freestanding single-atom silicon layer



Dr Yi Du and his team's work involves several special techniques that can be done only at ISEM with the help of its powerful tools, including a scanning tunneling microscope, which creates an ultra-high vacuum environment about a hundred times higher than the vacuum level experienced in orbit at the International Space Station. Credit: University of Wollongong

Much like an overcooked dinner, the next so-called wonder material for next-generation electronics has been 'stuck to the pan' until researchers at the UOW's Institute for Superconducting and Electronic Materials (ISEM) came up with a breakthrough solution.


The material is silicene, the thinnest possible form of silicon, comprised of a two-dimensional layer of silicon crystals.
Electrons move ultrafast in silicene, reducing the energy required to drive electronic devices and paving the way for even smaller, flexible, transparent and low-energy-cost electronics.
Until now, silicene has been 'grown' on a metal surface, but researchers had no proven way of freeing it from the substrate to create a freestanding material that could then be incorporated into  and components.
ISEM Research Fellow Dr Yi Du and his team have used oxygen to separate a single-atom thick layer of silicon from its surface, overcoming the key hurdle preventing the production of a material with potential to supercharge electronics.
"We know silicene crystals prefer to firmly attach on the metallic substrate and because they are too thin to be peeled off by any mechanical tools, it's impossible to remove them from the substrate," Dr Du said.
Researchers have experimented with the idea of using 'chemical scissors' to break the bond between silicene and the substrate and the breakthrough for Dr Du and his team came through using oxygen molecules as chemical scissors to cut the silicene from its substrate.
The work, supported by the Australian Research Council (ARC), involves several special techniques that can be done only at ISEM with the help of its powerful tools, including a scanning tunneling microscope, which creates an  environment about a hundred times higher than the vacuum level experienced in orbit at the International Space Station.
"Because the vacuum levels are so high, we can inject the  into the chamber and they become a 'molecular flux' that follows a straight pathway," Dr Du said. "This allows us to direct these molecules precisely into the silicene layers, acting like scissors to separate the silicene."
The result is a layer of freestanding silicene – with an appearance much like a honeycomb lattice – that could be transferred to an insulating substrate to make advanced transistors.
The theory for two-dimensional silicene was introduced in 1994 but it wasn't until 2012 that scientists, including a team at UOW, successfully fabricated silicene in the lab.
Silicene is emerging player in the super-materials category, alongside graphene, which is a single-atom thick layer of carbon. Graphene has been shown to be the fastest conductor of electricity yet found, faster than commonly used silicon.
Graphene can't be switched between on and off states of conductivity. This makes it unsuitable for applications such as transistors.
Because silicon and carbon sit side-by-side on the periodic table, scientists were inspired to investigate if silicon's atomic properties could be similarly revolutionary but more easily exploited because of its compatibility with existing silicon-based electronics.
"This work solves the long-lasting problem of isolating this super material for further device development. It challenges the entire scientific literature on silicene since its discovery," Dr Du said.
"These findings are relevant for the future design and application of -based nano-electronic and spintronic devices."
The research was published recently in the journal Science Advances and ACS Central Science and is the result of collaboration between Australian and Chinese researchers including Professor Jijun Zhao, from the Dalian University of Technology and Dr Jiaou Wang at the Beijing Synchrotron Radiation Facility (Chinese Academy of Sciences).

Comments

Popular posts from this blog

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...