Skip to main content

Towards the T-1000: Liquid metals propel future electronics


Continuous motion of a self-propelling liquid metal droplet under a pH gradient, shown at different time intervals. The droplet is placed in a fluidic channel, midway between two reservoirs filled with different electrolytes of acidic and basic nature. Credit: RMIT University


Science fiction is inching closer to reality with the development of revolutionary self-propelling liquid metals—a critical step towards future elastic electronics.
While building a shape-shifting liquid metal T-1000 Terminator may still be far on the horizon, the pioneering work by researchers at RMIT University in Melbourne, Australia, is setting the foundation for moving beyond  towards flexible and dynamically reconfigurable soft circuit systems.
Modern electronic technologies like smart phones and computers are mainly based on circuits that use  components, with fixed metallic tracks and semiconducting devices.
But researchers dream of being able to create truly elastic electronic components—soft circuit systems that can act more like live cells, moving around autonomously and communicating with each other to form new circuits rather than being stuck in one configuration.
Liquid metals, in particular non-toxic alloys of gallium, have so far offered the most promising path for realising that dream.
As well as being incredibly malleable, any droplet of liquid metal contains a highly-conductive metallic core and an atomically thin semiconducting oxide skin—all the essentials needed for making electronic circuits.
To work out how to enable liquid metal to move autonomously, Professor Kourosh Kalantar-zadeh and his group from the School of Engineering at RMIT first immersed liquid metal droplets in water.
http://phys.org/news/2016-08-t-liquid-metals-propel-future.html

"Putting droplets in another liquid with an ionic content can be used for breaking symmetry across them and allow them to move about freely in three dimensions, but so far we have not understood the fundamentals of how liquid metal interacts with surrounding fluid," Kalantar-zadeh said.
"We adjusted the concentrations of acid, base and salt components in the water and investigated the effect.
"Simply tweaking the water's chemistry made the liquid metal droplets move and change shape, without any need for external mechanical, electronic or optical stimulants.
"Using this discovery, we were able to create moving objects, switches and pumps that could operate autonomously - self-propelling liquid metals driven by the composition of the surrounding fluid."
The research lays the foundation for being able to use "electronic" liquid metals to make 3D electronic displays and components on demand, and create makeshift and floating electronics.
"Eventually, using the fundamentals of this discovery, it may be possible to build a 3D liquid metal humanoid on demand - like the T-1000 Terminator but with better programming," Kalantar-zadeh said.
The research, which has potential applications in a range of industries including smart engineering solutions and biomedicine, is published on 4 August in Nature Communications.
In the paper, first author Dr Ali Zavabeti details the precise conditions in which  can be moved or stretched, how fluid on their surfaces moves around and—as a result—how they can make different flows.
The work also explains how the electric charges that accumulate on the surface of liquid metal droplets, together with their oxide skin, can be manipulated and used.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in