Skip to main content

What is quantum in quantum thermodynamics?


Physicists have shown that the three main types of engines (four-stroke, two-stroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. Credit: Uzdin, et al. Published by the American Physical Society under CC-BY-3.0

A lot of attention has been given to the differences between the quantum and classical worlds. For example, quantum entanglement, superposition, and teleportation are purely quantum phenomena with no classical counterparts. However, when it comes to certain areas of thermodynamics—specifically, thermal engines and refrigerators—quantum and classical systems so far appear to be nearly identical. It seems that the same thermodynamic laws that govern the engines in our vehicles may also accurately describe the tiniest quantum engines consisting of just a single particle.

In a new study, physicists Raam Uzdin, Amikam Levy, and Ronnie Kosloff at the Hebrew University of Jerusalem have investigated whether there is anything distinctly quantum about thermodynamics at the , or if "quantum" thermodynamics is really the same as classical thermodynamics.
For the first time, they have shown a difference in the thermodynamics of heat machines on the quantum scale: in part of the quantum regime, the three main engine types (two-stroke, four-stroke, and continuous) are thermodynamically equivalent. This means that, despite operating in different ways, all three types of engines exhibit all of the same thermodynamic properties, including generating the same amounts of power and heat, and doing so at the same efficiency. This new "thermodynamical equivalence principle" is purely quantum, as it depends on quantum effects, and does not occur at the classical level.
The scientists also showed that, in this  where all engines are thermodynamically equivalent, it's possible to extract a quantum-thermodynamic signature that further confirms the presence of quantum effects. They did this by calculating an upper limit on the work output of a classical engine, so that any engine that surpasses this bound must be using a quantum effect—namely, quantum coherence—to generate the additional work. In this study, , which accounts for the wave-like properties of quantum particles, is shown to be critical for power generation at very fast engine cycles.
"To the best of my knowledge, this is the first time [that a difference between quantum and classical thermodynamics has been shown] in heat machines," Uzdin told Phys.org. "What has been surprising [in the past] is that the classical description has still held at the quantum level, as many authors have shown. The reasons are now understood, and in the face of this classicality, people have started to stray to other types of research, as it was believed that nothing quantum can pop up. Thus, it was very difficult to isolate a generic effect, not just a numerical simulation of a specific case, with a complementing theory that manages to avoid the classicality and demonstrate quantum effects in thermodynamic quantities, such as work and heat."

(Left) (a) In the quantum regime where the engine action is relatively small, all three engines generate the same amount of work after the completion of each cycle (the vertical lines indicate a complete cycle). (b) When the engine action is increased, the engines perform differently and the equivalence no longer holds. (Right) Quantum heat engines exhibit a quantum-thermodynamic signature, which occurs in the shaded region above the upper bounds on the power of two-stroke (dashed blue line) and four-stroke (dashed red line) engines. Credit: Uzdin, et al. Published by the American Physical Society under CC-BY-3.0
One important implication of the new results is that quantum effects may significantly increase the performance of engines at the  level. While the current work deals with single-particle engines, the researchers expect that  may also emerge in multi-particle engines, where  between particles may play a role similar to that of coherence.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in