Skip to main content
This physicist says consciousness could be a new state of matter
'Perceptronium'. 
Consciousness isn’t something scientists like to talk about much. You can’t see it, you can’t touch it, and despite the best efforts of certain researchersyou can’t quantify it. And in science, if you can’t measure something, you’re going to have a tough time explaining it.

But consciousness exists, and it’s one of the most fundamental aspects of what makes us human. And just like dark matter and dark energy have been used to fill some otherwise gaping holes in the standard model of physics, researchers have also proposed that it’s possible to consider consciousness as a new state of matter.
To be clear, this is just a hypothesis, and one to be taken with a huge grain of salt, because we’re squarely in the realm of the hypothetical here, and there's plenty of room for holes to be poked.
But it’s part of a quietly bubbling movement within theoretical physics and neuroscience to try and attach certain basic principles to consciousness in order to make it more observable.
The hypothesis was first put forward in 2014 by cosmologist and theoretical physicist Max Tegmark from MIT, who proposed that there’s a state of matter - just like a solid, liquid, or gas - in which atoms are arranged to process information and give rise to subjectivity, and ultimately, consciousness.
The name of this proposed state of matter? Perceptronium, of course.
"Generations of physicists and chemists have studied what happens when you group together vast numbers of atoms, finding that their collective behaviour depends on the pattern in which they are arranged: the key difference between a solid, a liquid, and a gas lies not in the types of atoms, but in their arrangement. 
In this paper, I conjecture that consciousness can be understood as yet another state of matter. Just as there are many types of liquids, there are many types of consciousness.
However, this should not preclude us from identifying, quantifying, modelling, and ultimately understanding the characteristic properties that all liquid forms of matter (or all conscious forms of matter) share."
In other words, Tegmark isn’t suggesting that there are physical clumps of perceptronium sitting somewhere in your brain and coursing through your veins to impart a sense of self-awareness. 
Rather, he proposes that consciousness can be interpreted as a mathematical pattern - the result of a particular set of mathematical conditions.
Just as there are certain conditions under which various states of matter - such as steam, water, and ice - can arise, so too can various forms of consciousness, he argues.
Figuring out what it takes to produce these various states of consciousness according to observable and measurable conditions could help us get a grip on what it actually is, and what that means for a human, a monkey, a flea, or a supercomputer.
The idea was inspired by the work of neuroscientist Giulio Tononi from the University of Wisconsin in Madison, who proposed in 2008 that if you wanted to prove that something had consciousness, you had to demonstrate two specific traits.
According to his integrated information theory (IIT), the first of these traits is that a conscious being must be capable of storing, processing, and recalling large amounts of information. 
"And second," explains the arXiv.org blog, "this information must be integrated in a unified whole, so that it is impossible to divide into independent parts."
This means that consciousness has to be taken as a whole, and cannot be broken down into separate components. A conscious being or system has to not only be able to store and process information, but it must do so in a way that forms a complete, indivisible whole, Tononi argued.
If it occurred to you that a supercomputer could potentially have these traits, that’s sort of what Tononi was getting at. 
As George Johnson writes for The New York Times, Tononi’s hypothesis predicted - with a whole lot of maths - that "devices as simple as a thermostat or a photoelectric diode might have glimmers of consciousness - a subjective self".
In Tononi’s calculations, those "glimmers of consciousness" do not necessarily equal a conscious system, and he even came up with a unit, called phi or Φ, which he said could be used to measure how conscious a particular entity is.
Six years later, Tegmark proposed that there are two types of matter that could be considered according to the integrated information theory.
The first is 'computronium', which meets the requirements of the first trait of being able to store, process, and recall large amounts of information. And the second is 'perceptronium', which does all of the above, but in a way that forms the indivisible whole Tononi described.
In his 2014 paper, Tegmark explores what he identifies as the five basic principles that could be used to distinguish conscious matter from other physical systems such as solids, liquids, and gases - "the information, integration, independence, dynamics, and utility principles".
He then spends 30 pages or so trying to explain how his new way of thinking about consciousness could explain the unique human perspective on the Universe.
As the arXiv.org blog explains, "When we look at a glass of iced water, we perceive the liquid and the solid ice cubes as independent things even though they are intimately linked as part of the same system. How does this happen? Out of all possible outcomes, why do we perceive this solution?"
It's an incomplete thought, because Tegmark doesn't have a solution. And as you might have guessed, it's not something that his peers have been eager to take up and run with. But you can read his thoughts as they stand in his paper published in the journal Chaos, Solitons & Fractals.
That's the problem with something like consciousness - if you can't measure your attempts to measure it, how can you be sure you've measured it at all?
¯\_(ツ)_/¯
More recently, scientists have attempted to explain how human consciousness could be transferred into an artificial body - seriously, there's a start-up that wants to do this - and one group of Swiss physicists have suggested consciousness occurs in 'time slices' that are hundreds of milliseconds apart.
As Matthew Davidson, who studies the neuroscience of consciousness at Monash University in Australia, explains over at The Conversation, we still don't know much about what consciousness actually is, but it's looking more and more likely that it's something we need to consider outside the realm of humans.
"If consciousness is indeed an emergent feature of a highly integrated network, as IIT suggests, then probably all complex systems - certainly all creatures with brains - have some minimal form of consciousness," he says.
"By extension, if consciousness is defined by the amount of integrated information in a system, then we may also need to move away from any form of human exceptionalism that says consciousness is exclusive to us."
Here's Tegmark's TED talk on consciousness as a mathematical pattern:

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...