Skip to main content

Quantum drag: Physicists say current in one iron magnetic sheet can create quantized spin waves in another, separate she Read more at: http://phys.org/news/2016-07-quantum-physicists-current-iron-magnetic.html#jCp




This illustration shows how the magnetic fields of individual atoms, reimagined as bar magnets, change position like tiny compasses when heat or a current is applied to a solid material. The repositioning creates a spin wave, shown by the dotted line. These spin waves are being studied for potential use in microelectronics. Credit: Michael Flatté laboratory.

Friction and drag are commonplace in nature. You experience these phenomena when riding in an airplane, pairing electrical wiring, or rubbing pieces of sandpaper together.

Friction and drag also exist at the , the realm of atoms and molecules invisible to the naked eye. But how these forces interact across materials and energy sources remain in doubt.
In a new study, University of Iowa theoretical physicist Michael Flatté proposes that a magnetic  flowing through a magnetic iron sheet will cause a current in a second, nearby magnetic iron sheet, even though the sheets aren't connected. The movement is created, Flatté and his team say, when electrons whose magnetic spin is disturbed by the current on the first sheet exert a force, through , to create magnetic spin in the second sheet.
The findings may prove beneficial in the emerging field of spintronics, which seeks to channel the energy from  generated by electrons to create smaller, more energy-efficient computers and electronic devices.
"It means there are more ways to manipulate through  than we thought, and that's a good thing," says Flatté, senior author and team leader on the paper published June 9 in the journal Physical Review Letters.
Flatté has been studying how currents in magnetic materials might be used to build electronic circuits at the nanoscale, where dimensions are measured in billionths of a meter, or roughly 1/50,000 the width of a human hair. Scientists knew that an electrical current introduced in a wire will drag a current in another nearby wire. Flatté's team reasoned that the same effects may hold true for magnetic currents in magnetic layers.
In a magnetic substance, such as iron, each atom acts as a small, individual magnet. These atomic magnets tend to point in the same direction, like an array of tiny compasses fixated on a common magnetic point. But the slightest disturbance to the direction of just one of these atomic magnets throws the entire group into disarray: The collective magnetic strength in the group decreases. The smallest individual disturbance is called a magnon.
Flatté and his team report that a steady magnon current introduced into one iron magnetic  will produce a magnon current in a second layer—in the same plane of the layer but at an angle to the introduced current. They propose that the electron spins disturbed in the layer where the current was introduced engage in a sort of "cross talk" with spins in the other layer, exerting a force that drags the spins along for the ride.
"What's exciting is you get this response (in the layer with no introduced current), even though there's no physical connection between the layers," says Flatté, professor in the physics department and director of the Optical Science and Technology Center at the UI. "This is a physical reaction through electromagnetic radiation."
How electrons in one layer communicate and dictate action to electrons in a separate layer is somewhat bizarre.
Take electricity: When an electrical current flows in one wire, a mutual friction drags current in a nearby wire. At the quantum level, the physical dynamics appear to be different. Imagine that each electron in a solid has an internal bar magnet, a tiny compass of sorts. In a magnetic material, those internal bar magnets are aligned. When heat or a current is applied to the solid, the electrons' compasses get repositioned, creating a  wave that ripples through the solid. In the theoretical case studied by Flatté, the disturbance to the solid excites magnons in one layer that then exert influence on the other layer, creating a spin wave in the other layer, even though it is physically separate.
"It turns out there is the same effect with spin waves," Flatté says.
Contributing authors include Tianyu Liu with the physics and astronomy department at the UI and Giovanni Vignale at the University of Missouri, Columbia.
The U.S. National Science Foundation funded the research through grants to the Center for Emergent Materials.

Comments

Popular posts from this blog

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...