Skip to main content

Magnetically controlled battery could store energy for power grids



Images of the magnetic fluid containing superparamagnetic nanoparticles that move with an applied magnetic field. (e) shows the color difference between a pure polysulfide solution without magnetic nanoparticles (left) and a biphasic magnetic polysulfide solution (right) with a high and low concentration of polysulfide. Credit: Li, et al. ©2015 American Chemical Society


Scientists have built a battery containing a magnetic fluid that can be moved in any direction by applying a magnetic field. The magnetically controlled battery concept could be especially useful for flow batteries, where it could eliminate the need for the pumps that are typically required for moving the electrolyte from an external storage tank to the inside of a power stack to provide electricity. Flow batteries are being actively researched as large-scale energy storage devices for power grids, where they could store energy captured by intermittent alternative energy sources such as wind and solar.

The researchers, led by Yi Cui, Professor at Stanford University, have published a paper on the new magnetically controlled battery in a recent issue of Nano Letters.
"The greatest significance of our work lies in the innovative idea of using a magnetic field to control and enhance the mass and electron transport in a battery system," lead author Weiyang Li, previously at Stanford University and now at Dartmouth College, told Phys.org.
The key to the new battery design is the composition of the catholyte (the part of the electrolyte near the cathode), which contains lithium polysulfide mixed with magnetic . By applying a magnetic field, the researchers could pull the nanoparticle colloids in a desired direction, and due to strong binding between the iron oxide nanoparticles and the lithium polysulfide, the lithium polysulfide could be pulled along with the magnetic particles. This creates a biphasic magnetic solution, with a high concentration of polysulfide on one side of the container and a low concentration on the other.
Magnetically moving the electrochemically active materials in the electrolyte in this way would be very useful for flow batteries because the goal in these batteries is to move the active molecules so that they are in close contact with a current collector. This allows a greater number of the active materials to be used, resulting in a higher energy density for the battery.
Tests showed that the new magnetic fluid containing the  nanoparticles leads to improvements in several areas compared to an electrolyte without the nanoparticles, including a higher capacity (350 mAh/g vs. 126 mAh/g), which corresponds to a high volumetric energy density of 66 Wh/L, as well as better capacity retention and efficiency. The researchers attribute these improvements to the magnetic field's ability to transport more polysulfide molecules and to minimize the undesirable "shuttle effect"—which occurs when the polysulfide molecules shuttle to the anode—because the magnetic nanoparticles can anchor the polysulfide molecules at the cathode.
http://phys.org/news/2015-10-magnetically-battery-energy-power-grids.html
The researchers demonstrate that the magnetic fluid forms a concentrated polysulfide phase that moves in the direction of a magnet. Credit: Li, et al. ©2015 American Chemical Society

In the future, if the -control concept could replace the need for pumps in flow batteries, it would eliminate parasitic pumping losses, which in turn could significantly increase the efficiency and lower the cost of these .
"Our idea can be potentially applied to a wide range of flow battery systems, not only confined to the lithium polysulfide  in our paper," Cui said. "We are planning to extend our idea to other  systems for electric grids, portable electronics, and transportation, as well."

Comments

Popular posts from this blog

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...