Skip to main content

Scientists create liquid light, get one step closer to spintronics


Strange things go on when you push physics to extremes. Extending Moore’s Law to its physical conclusion, we run into problems like the traces in circuits being so small that electrons can quantum tunnel between them. But electrons aren’t the only thing we can use to carry data through circuits. Researchers from Cambridge University have created a semiconductor assembly that blurs the line between electricity and light, and they think we can commercialize it to make optical spintronics — using electron spin in electronics — a reality.
“We have made a field-effect light switch that can bridge the gap between optics and electronics,” says Dr. Hamid Ohadi, coauthor, from the Cavendish Laboratory at Cambridge. “We’re reaching the limits of how small we can make transistors, and electronics based on liquid light could be a way of increasing the power and efficiency of the electronics we rely on.”
It started when researchers caught a laser with a thin slice of semiconductor material in a tiny, mirrored microcavity. This arrangement forced the photons to interact with the semiconductor excitons (excited electrons, bound to the “hole” created when they become excited) and produce a superfluid made of half-light, half-matter chimera quasi-particles called polaritons.
Polaritons result from imposing a dipole on an electromagnetic wave. It’s the same thing that happens when you circularly polarize light. The clockwise or counterclockwise rotation confers a dipole unto the polaritons, giving them orientation and angular momentum in 3-space.
At the cryogenic temperatures these researchers were using, when lots of polaritons are generated in a confined space, they start doing wibbly-wobbly waveform interference stuff, and condense together like water vapor does onto the bathroom mirror. What results is called a polariton Bose-Einstein condensate, which is a superfluid just like a regular Bose-Einstein condensate. The polariton fluid emits light with clockwise or counterclockwise spin. The researchers were able to switch between spin directions by controlling an electric field that they induced within the condensate.
All this matters because spin encoded light can carry data as optical signals, which have advantages over electrical signals at the nanoscale, as well as in security, bandwidth and power consumption. This liquid-light switch could act sort of like a nanophotonic torque converter, translating information from the electrical regime into optical signals. The electric field switching that the researchers used to control their polariton condensate consumed less than 0.5 fJ, which is an amount of power so small that it both defies casual comprehension and makes researchers drool.
Cryogenic temperatures, superfluids, and femto-Joule power consumption are fine for in the lab to prove a concept. They’re less helpful when it comes to real-world consumer devices accessible to mere mortals. Theoretically, this is a great development that could much accelerate fiber-to-the-home, but in practice it’s still a handful of dudes with a laser they can’t take out of the lab. But the team is already working on ways to make this system operable at room temperatures. They’re optimistic: coauthor Pavlos Savvidis of the FORTH institute in Crete says, “Since this prototype is based on well-established fabrication technology, it has the potential to be scaled up in the near future.”

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in