Skip to main content

Metal-organic frameworks: Hot 'new' material found to exist in nature in rare minerals from Siberia


Individual crystals of synthetic zhemchuzhnikovite, prepared by Igor Huskić, McGill University. Credit: Igor Huskić, Friščić Research Group, McGill University

One of the hottest new materials is a class of porous solids known as metal-organic frameworks, or MOFs. These man-made materials were introduced in the 1990s, and researchers around the world are working on ways to use them as molecular sponges for applications such as hydrogen storage, carbon sequestration, or photovoltaics.

Now, a surprising discovery by scientists in Canada and Russia reveals that MOFs also exist in nature—albeit in the form of  found so far only in Siberian coal mines.
The finding, published in the journal Science Advances, "completely changes the normal view of these highly popular materials as solely artificial, 'designer' solids," says senior author Tomislav Friščić, an associate professor of chemistry at McGill University in Montreal. "This raises the possibility that there might be other, more abundant, MOF minerals out there."
The twisting path to the discovery began six years ago, when Friščić came across a mention of the minerals stepanovite and zhemchuzhnikovite in a Canadian mineralogy journal. The crystal structure of the minerals, found in Russia between the 1940s and 1960s, hadn't been fully determined. But the Russian mineralogists who discovered them had analyzed their chemical composition and the basic parameters of their structures, using a technique known as X-ray powder diffraction. To Friščić, those parameters hinted that the minerals could be structurally similar to a type of man-made MOF.

An aggregate of synthetic zhemchuzhnikovite, prepared by Igor Huskić, McGill University. Credit: Igor Huskić, Friščić Research Group, McGill University
His curiosity piqued, Friščić began looking for samples of the rare minerals, reaching out to experts, museums and vendors in Russia and elsewhere. After a promising lead with a mining museum in Saint Petersburg failed to pan out, Igor Huskić, a graduate student in the Friščić research group at McGill turned his attention to synthesizing analogues of the minerals in the lab - and succeeded. But a major journal last year declined to publish the team's work, in part because the original description of the minerals had been reported in a somewhat obscure Russian mineralogical journal.
Then, the McGill chemists caught a break: with the help of a crystallographer colleague in Venezuela, they connected with two prominent Russian mineralogists: Sergey Krivovichev, a professor at Saint Petersburg State University, and Prof. Igor Pekov of Lomonosov Moscow State University.
Krivovichev and Pekov were able to obtain the original samples of the two rare minerals, which had been found decades earlier in a coal mine deep beneath the Siberian permafrost. The Russian experts were also able to determine the crystal structures of the minerals. These findings confirmed the McGill researchers' initial results from their lab synthesis.
Fragment of the crystal structure of the natural zhemchuzhnikovite mineral. Credit: Luzia Germann, Dinnebier Research Group, MPI Stuttgart and Igor Huskić, Friščić Research Group, McGill University
Stepanovite and zhemchuzhnikovite have the elaborate, honeycomb-like structure of MOFs, characterized at the molecular level by large voids. The two minerals aren't, however, representative of the hottest varieties of MOFs—those that are being developed for use in hydrogen-fueled cars or to capture waste carbon dioxide.
As a result, Friščić and his collaborators are now broadening their research to determine if other, more abundant minerals have porous structures that could make them suitable for uses such as  or even drug delivery.
In any event, the discovery of MOF structures in the two rare minerals already is "paradigm-changing" Friščić says. If scientists had been able to determine those structures in the 1960s, he notes, the development of MOF materials "might have been accelerated by 30 years."

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Scientists solve puzzle of turning graphite into diamond

Stochastic surface walking simulations can explain why graphite turns into hexagonal, not cubic, diamond under pressures of 5-20 gigapascals. Credit: Xie et al. ©2017 American Chemical Society Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the more familiar cubic diamond, as predicted by theory? The answer largely comes down to a matter of speed—or in chemistry terms, the reaction kinetics. Using a brand new type of simulation, the researchers identified the lowest-energy pathways in the graphite-to-diamond transition and found that the transition to hexagonal diamond is about 40 times faster than the transition to cubic diamond. Even when cubic diamond does begin to form, a large amount of hexagonal diamond is still mixed in. The researchers, Yao-Ping Xie, Xiao-Jie Zhang, and Zhi-Pan Liu at Fudan University and S...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...