Skip to main content

These 5 crazy thought experiments show how Einstein formed his revolutionary hypotheses

Albert Einstein, one of the greatest minds of the 20th century, forever changed the landscape of science by introducing revolutionary concepts that shook our understanding of the physical world.
One of Einstein's most defining qualities was his remarkable ability to conceptualise complex scientific ideas by imagining real-life scenarios. He called these scenarios "Gedankenexperiments", which is German for "thought experiments".
Here are a few thought experiments that demonstrate some of Einstein's most ground-breaking discoveries.
Imagine you're chasing a beam of a light.
This is something Einstein started thinking about when he was just 16 years old. What would happen if you chased a beam of light as it moved through space?
If you could somehow catch up to the light, Einstein reasoned, you would be able to observe the light frozen in space. But light can't be frozen in space, otherwise it would cease to be light.
Eventually Einstein realised that light cannot be slowed down and must always be moving away from him at the speed of light. Therefore something else had to change. Einstein eventually realised that time itself had to change, which laid the groundwork for his special theory of relativity.
Imagine you're standing on a train.
Imagine you're standing on a train while your friend is standing outside the train, watching it pass by. If lightning struck on both ends of the train, your friend would see both bolts of lightning strike at the same time.
But on the train, you are closer to the bolt of lightning that the train is moving toward. So you see this lightning first because the light has a shorter distance to travel.
This thought experiment showed that time moves differently for someone moving than for someone standing still, cementing Einstein's belief that time and space are relative and simultaneity doesn't exist. This is a cornerstone in Einstein's special theory of relativity.
Imagine you have a twin in a rocket ship.
This thought experiment is a well-known variation of Einstein's light-clock thought experiment, which has to do with the passage of time.
Let's say you have a twin, born at almost the exact same time as you. But the moment your twin is born, he or she gets placed in a spaceship and launched into space to travel through the universe at nearly the speed of light. 
According to Einstein's special theory of relativity, you and your twin would age differently. Since time moves slower the closer that you get to the speed of light, your twin would age more slowly.
When the spaceship lands back on Earth, you might be trying to sort out your retirement, while your twin is just trying to get through puberty.
Imagine you're standing in a box.
Imagine you are floating in a box, unable to see what's happening outside of the box. Suddenly, you drop to the floor. So what happened? Is the box being pulled down by gravity? Or is the box being accelerated by a rope yanking it upward?
The fact that these two effects would produce the same results led Einstein to the conclusion that there is no difference between gravity and acceleration - they are the same thing.
Now consider Einstein's previous assertion that time and space are not absolute. If motion can affect time and space, and gravity and acceleration are the same thing, that means gravity can actually affect time and space.
The ability of gravity to warp spacetime is a huge part of Einstein's general theory of relativity.
Imagine you're tossing a two-sided coin.
Einstein wasn't the biggest cheerleader for quantum theory. In fact, he was always coming up with thought experiments to try to disprove it. But it was these thought experiments that challenged the pioneers of quantum theory to perfect it down to its finest details.
One of Einstein's thought experiments had to do with quantum entanglement, which Einstein liked to call "spooky action at a distance".
Imagine you have a two-sided coin that can easily be split in half. You flip the coin and, without looking, hand one side to your friend and keep the other side for yourself. Then your friend gets on a rocket ship and travels across the universe.
Then you look at your coin. You see that in your hand you're holding the heads side of the coin and instantaneously you know that your friend, who is billions of light years away from you at this point, is holding the tails side.
If you think of the sides of these coins as indeterminate, changing back and forth between heads and tails until the point in time that you look at one, then the coins can circumvent the speed of light, instantaneously affecting each other regardless of how many light years separate them.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...