Skip to main content

Scientists experimentally demonstrate 140-year-old prediction: A gas in perpetual non-equilibrium

In monopole mode, the gas experiences very little damping, meaning it remains in a state of persistent non-equilibrium. A typical gas (in quadrupole mode) experiences damping at a rate that increases with the collision rate of the gas molecules, which indicates that entropy is increasing and the gas is approaching equilibrium. Credit: Lobser, et al. ©2015 Macmillan Publishers Limited


In 1876, the Austrian physicist Ludwig Boltzmann noticed something surprising about his equations that describe the flow of heat in a gas. Usually, the colliding gas particles eventually reach a state of thermal equilibrium, the point at which no net flow of heat energy occurs. But Boltzmann realized that his equations also predict that, when gases are confined in a specific way, they should remain in persistent non-equilibrium, meaning a small amount of heat is always flowing within the system.

Now for the first time, physicists at JILA, the National Institute of Standards and Technology, and the University of Colorado at Boulder have experimentally realized a three-dimensional cloud of  that never reaches , just as Boltzmann predicted nearly 140 years ago. The work builds on research from 2002, in which a persistent non-equilibrium state was observed in a two-dimensional gas.
"It's a long-delayed realization, call it a vindication, of one of the great Boltzmann's many interesting ideas," coauthor Eric Cornell at JILA told Phys.org. "Boltzmann was trying to explain why things always 'decay.' You always see a swinging pendulum damp, while its pivot point heats up a little from friction. You never see the pivot point cool down and the swinging increase. In coming up with a powerful theory to explain this all-important physical truth, Boltzmann was startled to encounter some examples where his equations predicted that there would not be damping—something you don't see in experiment!
"Boltzmann's intellectual opponents seized on this anomaly as evidence that his equations were wrong. But his equations are right. It's just that, back then, no one could do those particular experiments. These days, we can do the experiments. We all owe so much to Boltzmann and his legacy. We thought it would be a fitting tribute to him, to vindicate one of his more controversial (at the time!) predictions."
The reason why it has taken so long to experimentally confirm Boltzmann's prediction is because of the difficulty in generating a gas and confining it in space in a way that satisfies two strict requirements. One, the gas must be perfectly spherical (or "isotropic"), and two, it must confined by perfect harmonic confinement, which helps to reduce the effects of friction.
To realize such a system, the scientists used a new magnetic trap with extra magnetic coils, which allows various parameters to be adjusted independently. Using this device, the researchers trapped a cold gas cloud of rubidium atoms in such a way that the gas behaves in "monopole mode." In this mode, the temperature and cloud size of the gas oscillate with opposite phases—as one increases, the other decreases, and vice versa.

The scientists explain that these "breathing dynamics" are analogous to the oscillatory exchange between kinetic and potential energy that occurs in the simple harmonic motion of a swinging pendulum. Just as a swinging pendulum eventually reaches a state of equilibrium when it comes to a stop, a typical confined gas reaches a state of thermal equilibrium when heat ceases to flow. In both cases, the state of equilibrium is reached due to increasing entropy, which causes damping, or a decrease in the amplitude of the oscillations.
Here, however, the natural increase in entropy is frustrated by the very specific nature of the confinement and the interaction between the atoms. As evidence for this, the scientists showed that the gas in monopole mode barely experiences any damping at all, and the little bit of damping that it does experience is likely due to imperfections in the trap, since no physical system can provide perfectly isotropic and harmonic confinement. The researchers observed the greatly suppressed damping by taking images of the gas cloud from different angles and at very short intervals using phase-contrast microscopy, which allowed them to see oscillations in the cloud size.
Besides vindicating Boltzmann, the results could also have implications for understanding other non-equilibrium systems, including life itself.
"Non-equilibrium physics—the physics of what happens far away from thermal equilibrium—is a hot topic in science these days," Cornell said. "A classic example of matter out of equilibrium is life. How does it come about? Why does it persist? Our particular experimental example is maybe a little too clean, too classical, to be completely relevant to most modern research, but it is a great example of a broader physics idea called 'integrability' which explains why some systems don't ever achieve thermal equilibrium."

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...